Optimal Portfolio Methodology for Assessing Distributed Energy Resources Benefits for the Energynet™

California Energy Commission
IEPR Committee Workshop
Distribution Planning and the Role of DER
April, 2005

PIER Projects 500-01-039 and 500-04-008

Development Objectives

- Fully incorporate DER in delivery system planning.
- A systematic methodology to determine the location, size, and characteristics of DER projects that enhance the performance of a power delivery network.
- Quantify the network benefits of these projects.
- Assess the merits of wires and nonwires (DER) network upgrade alternatives on a consistent basis.

Network Operator Perspectives

- How is network performance at the distribution level, and how does it affect/is it affected by the overall network?
- How might redispatch of existing resources improve network performance?
- What is the potential of DR and DG, especially in the distribution system, as measures for network performance improvement? How do they compare to transmission upgrades?
- What are the location and operating characteristics of DR and DG required to achieve these benefits?

What's Different

- Transmission and distribution systems as a single, integrated power delivery network (Energynet dataset).
- Demand response, distributed generation, and capacitors as available DER options.
- A variety of measures to capture overall network performance.
- Individual dispatch of DER, coordinated for network benefits.
- AEMPFAST™ to determine individual network locations benefiting from resource additions.
- Potential network performance improvement from hypothetical "Optimal" DER Portfolio.

Development Conclusions

- Analysis of integrated power delivery network (Energynet dataset) provides insights that are otherwise unavailable.
- Demand response, local generation, and capacitors can provide significant network benefits if they are the right size and in the right location, and their operation is coordinated.
 - Benefits are not limited to Summer Peak conditions.
- DER projects may yield comparable or superior network performance relative to conventional network upgrades.
- Actual results are characteristic of each network.

Integration of Energynet Dataset

- High-voltage transmission historically analyzed without connected distribution:
 - WECC regional transmission characterization:
 - 2 115 kV transmission buses
 - Load split between two buses
 - 2 generators (plus two emergency peaksers)
 - Utility local system characterization:
 - 80 transmission buses (115, 60 kV)
 - · Generators modeled as negative load
 - 28 load-serving buses, usually 60/12 kV stepdown transformer banks
 - No depiction of surrounding system
- Distribution historically analyzed as individual radial feeders
 - Networking branches connecting feeders often not modeled.
- Final Energynet Integrated Dataset:
 - Our characterization:
 - ~ 850 buses 115 and 60 kV local transmission and 12 kV distribution
 - 48 12kV distribution feeders; 106 switchable branches interconnecting feeders
 - 422 customer load sites: 374 utility customer transformers, 43 customer-owned transformers
 - 6 existing generation units, 100 switchable capacitors
 - Fully-integrated into ~13,000 bus WECC west-wide high-voltage transmission model.
- This project marks the first time an integrated power delivery model has been created.

Local Transmission Voltage Profile

"As Found" Voltage Profile - Local Transmission Only

System Buses (arranged by loop)

- All buses within +/- 5% of rated voltage under Summer Peak conditions- a healthy system.
- Customer-sponsored generation and demand response would not be connected at these buses.
- Distribution-level DER impacts invisible.

Integrated T&D

"As Found" Energynet Voltage Profile

- Far more detail.
- Integrating distribution identifies more low-voltage buses and voltage variability.
- Impact of distribution changes immediately visible network-wide.

Seasonal View Using Recorded Network Data

"As Found" Seasonal Energynet Voltage Profiles

- System Buses (arranged by loop)
- Actual loads reveal seasonally-varying network conditions.
- "1% highest hour" Summer Peak actually atypical.

Improving Delivery Network Performance

Objective:

 Minimize real power losses, reactive power consumption, and voltage variability with a target voltage of 1.05 PU.

Existing Controls:

 Set MVAR output from shunts and MW and MVAR output from existing embedded generation for the best overall network performance.

Reactive Capacity Additions (MVAR)

- Station capacitors and line capacitors in standard sizes.

Dispatchable Demand Response Additions (negative real and reactive load)

- > 200 kVA customers
- Limited to 2-15% of customer load depending on customer size and case.

• Distributed Generation Additions (MW + MVAR based on synchronous generator pf range)

- Limited to 60% of customer load
- Non-export feeder limits.

Redispatching and Adding Resources Using AEMPFASTTM

Summer Peak 2002 Initial P Indices (Recontrolled Case)

- P Index identifies individual network locations where adding P resource is the most beneficial for the "objective" of improved overall network performance.
- Hundreds of potential DER sites ranked in terms of their network benefits.

Redistributing reactive sources improves voltage profiles.

Seasonal Voltage Profiles with Recontrols

- System Buses (arranged by loop)
- Integrated network model reveals impacts of individual distribution-installed capacitors.
- AEMPFAST results specify optimized operational settings.
- Localized changes have network-wide impacts.

Improving Delivery Network Performance

Objective:

- Minimize real power losses, reactive power consumption, and voltage variability with a target voltage of 1.05 PU.

Existing Controls:

 Set MVAR output from shunts and MW and MVAR output from existing embedded generation for the best overall network performance.

Reactive Capacity Additions (MVAR)

Station capacitors and line capacitors in standard sizes.

Dispatchable Demand Response Additions (negative real and reactive load)

- > 200 kVA customers
- Limited to 2-15% of customer load depending on customer size and case.

• Distributed Generation Additions (MW + MVAR based on synchronous generator pf range)

- Limited to 60% of customer load
- Non-export feeder limits.

Optimal DER Portfolio projects yield significant improvement.

Seasonal Voltage Profiles with Optimal DER Portfolio Projects

- Portfolio of DR and DG projects with specified locations, sizes, seasonal operating profiles.
- Individual projects ranked in terms of network value under each set of conditions.

Key Locations

• Summer Peak 2002 highest-ranked DG additions (Light Load Limit case):

Location		Buses/Sites	Total DG (kW)	Avg Rank
North2	Feeder 202	5	1,070	11
Center2	Feeder 104	1	305	14
Core1	Feeder 305	9	287	15
North4	Feeder 105	6	860	43
North6	Feeder 203	10	1,481	44
North2	Feeder 204	1	1,341	53
North4	Feeder 104	21	1,162	53
North4	Feeder 304	1	130	56
North4	Feeder 204	1	690	59
North4	Feeder 101	6	869	62
Center3	Feeder 303	11	1,864	63
North2	Feeder 203	13	2,132	65
North4	Feeder 203	4	1,059	69
North4	Feeder 205	1	545	69
North6	Feeder 205	4	608	78
North6	Feeder 201	6	905	86
North4	Feeder 305	1	520	87
North6	Feeder 202	4	240	92
South3	Feeder 104	12	1,485	102
North4	Feeder 303	1	136	102
North4	Feeder 201	1	33	107
Center3	Feeder 203	1	850	111
North4	Feeder 103	1	530	120
North2	Feeder 102	1	695	121
North4	Feeder 301	11	880	122
North4	Feeder 202	1	125	132

Locations on Feeder Matter

Core1 Feeder 305 Initial P Index and DR Rank Summer Peak 2002

- High-ranked DER sites indicated by high P indices.
- High-ranked sites electrically distant from substation.

Characteristics of Individual Projects

Core1 Feeder 305 DR Projects (2002 Dispatch)

BUS#	Customer Class	Summer Peak DR (%)	Knee Peak DR (%)	Winter Peak DR (%)	Minimum Load DR (%)
524	Over 1,000 kVA	15%	5%	2%	2%
5163	200-1,000 kVA	15%	2%	2%	2%
8205	200-1,000 kVA	15%	2%	2%	2%
9129	200-1,000 kVA	15%	2%	2%	2%
8701	Over 1,000 kVA	15%	5%	2%	2%
8923	200-1,000 kVA	15%	2%	2%	2%
8404	200-1,000 kVA	15%	2%	2%	2%
7285	200-1,000 kVA	15%	2%	2%	2%
5191	Over 1,000 kVA	15%	2%	2%	2%

Core1 Feeder 305 DG Projects (2002 Dispatch)

BUS#	Customer Class	Summer Peak DG (kW)	Knee Peak DG (kW)	Winter Peak DG (kW)	Minimum Load DG (kW)
524	Over 1,000 kVA	115	115	115	0
5163	200-1,000 kVA	8	8	8	0
8205	200-1,000 kVA	14	14	14	0
9129	200-1,000 kVA	29	29	29	0
8701	Over 1,000 kVA	43	43	43	0
8923	200-1,000 kVA	14	14	14	14
8404	200-1,000 kVA	14	14	14	14
7285	200-1,000 kVA	7	7	7	7
5191	Over 1,000 kVA	43	43	43	43

Local Network Benefits -- 2002 Optimal DER Portfolio

DER Portfolio Projects:

- DR: 389 sites; 10.5 MW (2.6% of load on-peak)

- DG: 380 sites; 54.9 MW on-peak (13.8% of peak load).

160 kW average, 8.9 MW largest.

Network Benefits:

- Loss reduction: Total of 6.7 MW, 85.4 MVAR on peak

33 - 39% reduction in local real power losses.

28 - 45% reduction in local reactive power losses.

Increased load-serving capability: 117.6 MW

- Incremental peak capacity: 60.3 MW

- Eliminated all low-voltage buses.

Reduced voltage variability

Network benefits occur under Winter Peak and Minimum Load conditions (i.e., not limited to Knee Peak and 1% highest hour Summer Peak).

Estimated value of network benefits:

- ~\$450 per kW of year-round dispatchable DER if capacity is included.

2005 Optimal DER Portfolio Network Benefits

Summer Peak 2005 Voltage Profiles

Voltage profiles flatter; low-voltage corrected.

Local Network Benefits -- 2005 Optimal DER Portfolio

DER Portfolio Projects:

- DR: 390 sites; 25.5 MW (2.6% of load on-peak)

- DG: 149 sites; 66.7 MW on-peak (11.5% of peak load).

447 kW average, 14.3 MW largest

Network Benefits:

- Loss reduction: Total of 11.8 MW, 155.7 MVAR on peak

40% reduction in local real losses.

31% reduction in local reactive losses.

Increased load-serving capability: 46.7 MW

Incremental peak capacity: 104.0 MW

- Eliminated all low-voltage buses.

- Reduced voltage variability

Illustrative Comparison with Conventional Network Upgrades

2005 Network Performance Impacts:

	Optimal DER Portfolio	Project 2	Project 3	Projects 2&3
Incremental P Losses Incremental Q Losses	-40% -31%	38% 27%	-2.0% -0.4%	18% 21%
Incremental Load-serving Capability (MW)	46.7	37.5	38.5	79.0
Incremental System Capacity (MW)	104.0	-	147.1	147.1

- > Potential DER network benefits are comparable to those of these network upgrade projects.
- Which alternative is "better" depends on costs, benefits other than network performance, and the system operator's objectives.

Illustrative Comparison with Conventional Network Upgrades

Summer Peak 2005 Recontrolled Voltage Profiles

- Optimal DER Portfolio yields greater improvement in voltage profile.

Recontrol of existing resources to improve network performance

- Existing capacitor operating profiles:
 - 64% of capacitors either change settings during one or more seasonal peak or change on-peak/off peak settings seasonally.
 - 18% change settings for "1% highest hour" summer peak
 - 46% operate in default positions during peak periods or shut off during minimum load periods year-round.
- All existing embedded generators change MVAR dispatch under at least one set of modeled conditions.

Promoting New Beneficial DER Projects

Requirements can be established ahead of time.

Optimal DER Portfolio can be easily re-characterized as network evolves.

Availability requirements:

- About half of large customer DR projects are preferred locations for higher dispatch only during specified times of year.
- Most valuable DR sites for 1% highest hour peak dispatch are identifiable.
- 60% of DG projects do not need to vary MW output for system performance.

Contractual requirements:

- DR or DG project size located as specified; size comparable to study result.
- Site-specific dispatchability requirements met; telecommunication infrastructure in place.
- DG VAR output dispatchable by network operator within limits.
- Rights to value of system capacity remain with network operator.
- Projects in the right locations meeting these requirements could be paid a share of the value of the network benefits they will yield.

PIER Project 500-01-039 Conclusions

- DER with the right characteristics can improve network performance.
- Network benefits of DER can be quantified and valued and compared with traditional network upgrades.
- Ideal location, size, and dispatch of beneficial DER projects for a given network can be determined.
 - Valuable information for network operators considering upgrades and to direct DR and DG programs.
- Energynet dataset integrating transmission and distribution is practical and adds new insights.
 - Potentially useful for a variety of network planning purposes.
- AEMPFAST is a valid and useful tool within this application.
- Barriers remain for DER at high penetration levels.

Elements of Next Phase (PIER Project 500-04-008)

- Partnering with SCE, Navigant, DOE
- Major utility-scale Energynet datasets
 - 15X size, more complex
 - Heavily-loaded/high growth
 - Networked transmission
- Expand DER devices and measures considered.
 - Storage devices
 - Changeable topology
- Expand measures of network performance.
 - Value of Service
 - Optimal Technologies' Reliability Optimization
 - Network operator planning objectives
- Common cost-benefit evaluation for DER/nonwires and existing/traditional network measures.
 - Using Navigant "Spending Prioritization Model" used by utilities to prioritize asset investments.
 - Puts optimization analysis and results in utility decisionmaking perspective
- Field validation of modeled network characteristics and impacts.

SCE Project Progress and Conclusions Thus Far

- Two subject systems within SCE territory identified.
 - Heavy demands on existing infrastructure.
 - Networked transmission.
- More complex than anticipated.
 - Longer feeders with more elements
 - Single-phase loads
- Dataset integration a key challenge and opportunity
 - Legacy data more accessible/extractable.
 - Value in automation.

Ties Between NPT Methodology and Navigant SPM

- Map NPT results to Navigant SPM.
- Value "network benefits" for consideration in spending prioritization.
 - \$ value for some difficult-to-price benefits such as reliability, voltage profile improvement.
- Summarize costs and benefits of DER as available measures for improving system infrastructure and performance.
 - Impact on capital and operating budgets.
- Navigant "funding curve" output incorporating both both wires and DER (or other non-wires) initiatives under a common cost/benefit evaluation methodology.

Details

• 500-01-039 Project Participants

- New Power Technologies
- Cupertino Electric, Inc.
- Silicon Valley Power
- Optimal Technologies (USA), Inc.
- Rita Norton & Associates LLC
- Silicon Valley Manufacturing Group
- William M. Stephenson
- Roy C. Skinner
- Linda Kelly (CEC Project Manager)
- Laurie Ten Hope (CEC Program Area Lead)

Technical Advisory Committee

- Dave Hawkins, California ISO
- Marija Ilic, Carnegie Mellon
- Jim Kavicky, Argonne National Lab
- Don Kondoleon/Demy Bucaneg, CEC
- John Monestario, PG&E Distribution Engineering (retired)

Details

• 500-04-008 Project Participants

- New Power Technologies
- SCE
- Navigant Consulting (funding through DOE/NETL)
- Optimal Technologies (USA), Inc.
- Cupertino Electric, Inc.
- William M. Stephenson
- Jeff Zias
- Roy C. Skinner (projected)
- Linda Kelly (CEC Project Manager)
- Mark Rawson (CEC Distributed Energy Integration Research Program Manager)

About New Power Technologies

- New Power Technologies identifies and develops businesses and technologies enabling a distributed, intelligent EnergynetTM energy infrastructure:
 - Integrated transmission and distribution
 - Embedded (or "distributed") generation with remote generation
 - Loads responsive to network conditions
 - Energy services mass customized to meet customer needs

Contact Information:

- Peter Evans 650.948.4546, info@NewPowerTech.com